Neuronal population codes and the perception of object distance in weakly electric fish.
نویسندگان
چکیده
Weakly electric fish use an electric sense to navigate and capture prey in the dark. Objects in the surroundings of the fish produce distortions in their self-generated electric field; these distortions form a two-dimensional Gaussian-like electric image on the skin surface. To determine the distance of an object, the peak amplitude and width of its electric image must be estimated. These sensory features are encoded by a neuronal population in the early stages of the electrosensory pathway, but are not represented with classic bell-shaped neuronal tuning curves. In contrast, bell-shaped tuning curves do characterize the neuronal responses to the location of the electric image on the body surface, such that parallel two-dimensional maps of this feature are formed. In the case of such two-dimensional maps, theoretical results suggest that the width of neural tuning should have no effect on the accuracy of a population code. Here we show that although the spatial scale of the electrosensory maps does not affect the accuracy of encoding the body surface location of the electric image, maps with narrower tuning are better for estimating image width and those with wider tuning are better for estimating image amplitude. We quantitatively evaluate a two-step algorithm for distance perception involving the sequential estimation of peak amplitude and width of the electric image. This algorithm is best implemented by two neural maps with different tuning widths. These results suggest that multiple maps of sensory features may be specialized with different tuning widths, for encoding additional sensory features that are not explicitly mapped.
منابع مشابه
Distance and shape: perception of the 3-dimensional world by weakly electric fish.
Weakly electric fish orient at night in complete darkness by employing their active electrolocation system. They emit short electric signals and perceive the consequences of these emissions with epidermal electroreceptors. Objects are detected by analyzing the electric images which they project onto the animal's electroreceptive skin surface. This process corresponds to similar processes during...
متن کاملActive electrolocation of objects in weakly electric fish
Weakly electric fish produce electric signals (electric organ discharges, EODs) with a specialised electric organ creating an electric field around their body. Objects within this field alter the EOD-induced current at epidermal electroreceptor organs, which are distributed over almost the entire body surface. The detection, localisation and analysis of objects performed by monitoring self-prod...
متن کاملWeakly Electric Fish as Models for Underwater Robots: The Use of Active Electrolocation for the Perception of 3-Dimensional Objects in Complex Environments
Introduction Since the early 1950s it is known that so-called weakly electric fish generate electrical signals with a special electric organ in their tail (Lissmann, 1951). During each electric organ discharge (EOD) an electric field builds up around the fish (Lissmann, 1958). The animal perceives its own electric emissions with epidermal electroreceptor organs (Szabo, 1967). Each object near t...
متن کاملThe electric image in weakly electric fish: perception of objects of complex impedance.
Weakly electric fish explore the environment using electrolocation. They produce an electric field that is detected by cutaneous electroreceptors; external objects distort the field, thus generating an electric image. The electric image of objects of complex impedance was investigated using a realistic model, which was able to reproduce previous experimental data. The transcutaneous voltage in ...
متن کامل3-Dimensional Scene Perception during Active Electrolocation in a Weakly Electric Pulse Fish
Weakly electric fish use active electrolocation for object detection and orientation in their environment even in complete darkness. The African mormyrid Gnathonemus petersii can detect object parameters, such as material, size, shape, and distance. Here, we tested whether individuals of this species can learn to identify 3-dimensional objects independently of the training conditions and indepe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 8 شماره
صفحات -
تاریخ انتشار 2001